Idiosyncrasies of Physical Vapor Deposition Processes from Various Knudsen Cells for Quinacridone Thin Film Growth on Silicon Dioxide
نویسندگان
چکیده
Thin films of quinacridone deposited by physical vapor deposition on silicon dioxide were investigated by thermal desorption spectroscopy (TDS), mass spectrometry (MS), atomic force microscopy (AFM), specular and grazing incidence X-ray diffraction (XRD, GIXD), and Raman spectroscopy. Using a stainless steel Knudsen cell did not allow the preparation of a pure quinacridone film. TDS and MS unambiguously showed that in addition to quinacridone, desorbing at about 500 K (γ-peak), significant amounts of indigo desorbed at about 420 K (β-peak). The existence of these two species on the surface was verified by XRD, GIXD, and Raman spectroscopy. The latter spectroscopies revealed that additional species are contained in the films, not detected by TDS. In the film mainly composed of indigo a species was identified which we tentatively attribute to carbazole. The film consisting of mainly quinacridone contained in addition p-sexiphenyl. The reason for the various decomposition species effusing from the metal Knudsen cell is the comparably high sublimation temperature of the hydrogen bonded quinacridone. With special experimental methods and by using glass Knudsen-type cells we were able to prepare films which exclusively consist of molecules either corresponding to the β-peak or the γ-peak. These findings are of relevance for choosing the proper deposition techniques in the preparation of quinacridone films in the context of organic electronic devices.
منابع مشابه
Microfabricated Fuel Cells with Thin-Film Silicon Dioxide Proton Exchange Membranes
Microfabricated fuel cells have been designed and constructed on silicon integrated circuit wafers using many processes common in integrated circuit fabrication, including sputtering, polymer spin coating, reactive ion etching, and photolithography. Proton exchange membranes PEMs for an “integrated” fuel cell have been made by low-temperature, plasma-enhanced chemical vapor deposition of silico...
متن کاملLaser applications in thin - film photovoltaics
We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be ...
متن کاملMultiscale Computational Fluid Dynamics: Methodology and Application to PECVD of Thin Film Solar Cells
This work focuses on the development of a multiscale computational fluid dynamics (CFD) simulation framework with application to plasma-enhanced chemical vapor deposition of thin film solar cells. A macroscopic, CFD model is proposed which is capable of accurately reproducing plasma chemistry and transport phenomena within a 2D axisymmetric reactor geometry. Additionally, the complex interactio...
متن کاملSurface roughening during plasma enhanced chemical vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates
Surface roughening during plasma enhanced chemical vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates" Physical Review B. The morphology of a series of thin films of hydrogenated amorphous silicon ͑a-Si:H͒ grown by plasma-enhanced chemical-vapor deposition ͑PECVD͒ is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-cr...
متن کاملGold catalytic Growth of Germanium Nanowires by chemical vapour deposition method
Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 119 شماره
صفحات -
تاریخ انتشار 2015